국립부경대학교 | 환경·해양대학

교수진

교수사진

남기전조교수

  • 주소 : 
  • 이메일 : 메일
  • 전화번호 : 051-629-6530
  • 홈페이지 : 

경희대학교 환경응용과학과 환경공학 박사 (2022)
경희대학교 환경응용과학과 환경공학 석사 (2018)
경희대학교 환경학 및 환경공학과 환경공학 학사 (2013) 

2022~2024: 삼성전자 DS (반도체사업부) 혁신센터 스마트팩토리그룹 Staff Engineer 

-환경 모델링
-환경 시스템 공학
-환경 빅데이터 분석
-환경 디지털 전환 (DX)
-컴퓨터 비전 

등록된 내용이 없습니다.

- Nam, K., Heo, S., Tariq, S., Woo, T., Yoo, C. (2024). Multi-agent reinforcement learning-enhanced autonomous calibration method for wastewater treatment modeling: Long-term validation of a full-scale plant. Journal of Water Process Engineering, 59, 104908
- Nam, K., Heo, S., Kim, S., Yoo, C. (2023). A multi-agent AI reinforcement-based digital multi-solution for optimal operation of a full-scale wastewater treatment plant under various influent conditions. Journal of Water Process Engineering, 52, 103533.
- Woo, T., Nam, K., Heo, S., Lim, J. Y., Kim, S., Yoo, C. (2022). Predictive maintenance system for membrane replacement time detection using AI-based functional profile monitoring: Application to a full-scale MBR plant. Journal of Membrane Science, 649, 120400.
- Heo, S., Nam, K., Woo, T., Yoo, C. (2022). Digitally-transformed early-warning protocol for membrane cleaning based on a fouling-cumulative sum chart: Application to a full-scale MBR plant. Journal of Membrane Science, 643, 120080.
- Nam, K. J., Li, Q., Heo, S. K., Tariq, S., Loy-Benitez, J., Woo, T. Y., Yoo, C. K. (2021). Inter-regional multimedia fate analysis of PAHs and potential risk assessment by integrating deep learning and climate change scenarios. Journal of Hazardous Materials, 411, 125149.
- Nam, K., Heo, S., Rhee, G., Kim, M., Yoo, C. (2021). Dual-objective optimization for energy-saving and fouling mitigation in MBR plants using AI-based influent prediction and an integrated biological-physical model. Journal of Membrane Science, 626, 119208.
- Heo, S., Nam, K., Tariq, S., Lim, J. Y., Park, J., Yoo, C. (2021). A hybrid machine learning?based multi-objective supervisory control strategy of a full-scale wastewater treatment for cost-effective and sustainable operation under varying influent conditions. Journal of Cleaner Production, 291, 125853.
- Nam, K., Heo, S., Li, Q., Loy-Benitez, J., Kim, M., Park, D., Yoo, C. (2020). A proactive energy-efficient optimal ventilation system using artificial intelligent techniques under outdoor air quality conditions. Applied energy, 266, 114893.
- Nam, K., Heo, S., Loy-Benitez, J., Ifaei, P., Yoo, C. (2020). An autonomous operational trajectory searching system for an economic and environmental membrane bioreactor plant using deep reinforcement learning. Water Science and Technology, 81(8), 1578-1587.
- Nam, K., Hwangbo, S., Yoo, C. (2020). A deep learning-based forecasting model for renewable energy scenarios to guide sustainable energy policy: A case study of Korea. Renewable and Sustainable Energy Reviews, 122, 109725.
- Heo, S., Nam, K., Loy-Benitez, J., Li, Q., Lee, S., Yoo, C. (2019). A deep reinforcement learning-based autonomous ventilation control system for smart indoor air quality management in a subway station. Energy and Buildings, 202, 109440.
- Nam, K., Ifaei, P., Heo, S., Rhee, G., Lee, S., Yoo, C. (2019). An efficient burst detection and isolation monitoring system for water distribution networks using multivariate statistical techniques. Sustainability, 11(10), 2970.
- Nam, K., Kim, M., Lee, S., Hwangbo, S., Yoo, C. (2017). Interpretation and diagnosis of fouling progress in membrane bioreactor plants using a periodic pattern recognition method. Korean Journal of Chemical Engineering, 34, 2966-2977. 

지능형 환경 시스템 공학 연구실 (iESEL)